

凌思微电子(厦门)有限公司

LINKEDSEMI

凌思微 TK 模块应用笔记

修订记录

版本	修订日期	修订说明	作者
V1. 0	2022-1-21	初始版本	
V1. 1	2022-3-23	修改初始化的灵敏度	

目录

第1	. 章		概述	4
第2	章		初始化结构体参数介绍	5
	2.	1	初始化结构体	5
	2.	2	基础参数介绍	6
	2.	3	常用功能参数介绍	7
	2.	4	低功耗模式设置参数介绍	8
	2.	5	初始化结构体调用示例 (默认正常工作)	9
	2.	6	初始化结构体调用示例(开启低功耗扫描工作)	10
第3	章		TK 模块的功能函数介绍	12
	3.	1	寄存器数据读取函数	12
	3.	2	寄存器参数设置函数	13
	3.	3	开启扫描函数	13
	3.	4	关闭扫描函数	14
	3.	5	单通道灵敏度设置函数	
	3.	6	开启睡眠函数	14
	3.	7	唤醒睡眠函数	15
	3.	8	中断使能函数	15
	3.	9	中断禁止函数	15
第4	章		TK 模块调试	16
	4.	1	TK 调试说明关于灵敏度寄存器详细说明	16
	4.	_	关于灵敏度寄存器详细说明	16
			2. 1 全局灵敏度寄存器 TK_GSR	
			2. 2 单个通道灵敏度寄存器 TK_LSRx	
			2. 3 群扫描灵敏度寄存器 TK_LSGR	
			2. 4 群扫描补偿电流寄存器 TK_ICGSR	
			2. 5 CSD 模块扫描频率分频寄存器 TK_CFDR	
	4.	3	三种功耗下的灵敏度调试	
			3. 1 正常扫描	
			3. 2 低功耗扫描	
	_	4.	3. 3 睡眠模式	
附号	Ļ			91

第1章 概述

电容式触摸按键满足用户在复杂应用中对稳定性、灵敏度、功耗、响应速度、防水、带水操作、抗震动、抗电磁干扰等方面的高体验要求。开发过程非常简单,最大限度的降低了方案成本。适用于遥控器、灯具调光、各类开关以及车载、小家电和家用电器控制界面等应用中。

TK 模块具备电容式触摸按键检测功能,当按键有触摸时,可以被 TK 模块检测到。同时,TK 模块还可以选择不同的工作模式,降低在空闲时的运行功耗。

本应用笔记将介绍触摸按键模块(TK模块)的初始化配置,可被调用的功能以及调试方法。

V1.1 4/24

第2章 初始化结构体参数介绍

2. 1 初始化结构体

```
该结构体可用于初始化 TK 模块设置,具体参数介绍在后续章节中介绍。
typedef struct
  volatile uint8 t NPRR;
  volatile uint8_t DNPR;
  volatile uint8_t MultiOn;
  volatile uint8 t Debounce;
  volatile uint16 t ChannelEN;
  volatile uint8 t GbSen;
  volatile uint8_t LP;
  volatile uint8 t IComGS;
  volatile uint8 t CdcFswDiv;
  volatile uint8 t LowPowerScanPeriod;
  volatile uint8 t KeyDebounceCount;
  volatile uint8_t LpDelay;
  volatile uint8 t ScanPeriod;
  volatile uint16 t GsMask;
  volatile uint8 t LSenseGS;
} TK_InitTypeDef;
typedef struct __TK_HandleTypeDef
      TK_InitTypeDef Init; /*!
TK required parameters */
     {\tt HAL\_LockTypeDef\ Lock:} \ /{*!} < {\tt TK\ locking\ object\ */}
      volatile uint32_t ErrorCode; /*!< TK Error code */</pre>
} TK_HandleTypeDef;
```

V1.1 5/24

2. 2 基础参数介绍

1. 噪声门限比例倍数设置参数(NPRR)

该参数可以设置范围从 0 到 7,对应 4 倍,6 倍,8 倍,10 倍,12 倍,14 倍,16 倍,18 倍;当噪声保护使能时,如果检测信号超出触摸信号阈值的 NPRR 倍,则忽略此次检测结果。默认配置示例:tkHandle.Init.NPRR = 0;

2. 噪声保护使能参数 (DNPR)

该参数设置为 TK_DNPR_ENABLE 时,开启噪声保护。如果检测信号超出触摸信号阈值的 NPRR 倍,则忽略此次检测结果。

该参数设置为 TK_DNPR_DISABLE 时,关闭噪声保护。任何超出触摸信号阈值的检测 结果都会被采用。

默认配置示例: tkHandle. Init. DNPR = TK DNPR DISABLE;

3. 多感应通道同时感应使能参数(MultiOn)

该参数配置为 TK_MULTION_ENABLE 时,开启多个感应通道同时输出触摸结果。 该参数配置为 TK_MULTION_DISABLE 时,关闭多个感应通道同时输出触摸结果。 默认配置示例: tkHandle.Init.MultiOn = TK MULTION DISABLE;

4. 防抖动参数 (Debounce)

该参数可配置范围从 0 到 255。实际应用中,可能出现由于误触摸或者随机干扰造成的按键误触发情况,软件增加按键防抖动参数可以过滤掉这些干扰,保证按键的稳定性。如果按键灵敏度过低可适当减小防抖动参数,如果按键灵敏度过高可适当增大防抖动参数,默认配置为 3。默认配置示例: tkHandle. Init. Debounce = 3;

5. CDC 模块扫描频率参数 (CdcFswDiv)

该参数可配置范围从 0 到 255。配置该参数可改变按键寄生电容的充放电次数,默认配置为 0x07

默认配置示例: tkHandle. Init. CdcFswDiv = 0x07;

6. 消抖拍数 (KeyDebounceCount)

该参数设置范围从1到3,定义按键按下和抬起时的消抖拍数。配置该参数为1时,连续两拍按下 才会识别为按键按下,连续两拍没有触摸才会识别为按键抬起。

默认配置示例: tkHandle. Init. KeyDebounceCount = 1;

7. 扫描周期参数 (ScanPeriod)

该参数设置范围从1到3,定义扫描周期(ScanPeriod*16ms)。配置该参数可改变TK模块正常工作时的扫描周期,配置该参数为1时,TK模块在正常工作的扫描周期为16ms。

默认配置示例: tkHandle.Init.ScanPeriod = 1;

V1.1 6/24

2. 3 常用功能参数介绍

1. 电容按键通道使能参数(ChannelEN)

该参数可设置范围从 0x0000 到 0x3FFF, 用于控制电容通道使能, 共 13 个通道可设置, 对应该参数的 13 位, 如图 1, 配置该参数为 0x3FFF 时, 将使能 13 个按键通道。

默认配置示例: tkHandle. Init. ChannelEN = 0x3fff;

电容按键通道	12	11	10	9	8	7	6	5	4	3	2	1	0
电容按键参数设置为0x3FF用时	1	1	1	1	1	1	1	1	1	1	1	1	1

图 1 按键通道使能

2. 全局灵敏度参数(GbSen)

该参数可设置范围从 0 到 255,最高为 0,可实现一次性设置 13 个通道的灵敏度。配置该参数 为 0xA0 时,13 个通道的灵敏度都为 0xA0。但过高或过低的灵敏度都可能导致触摸检测失败。灵敏度过低时用户触摸无响应或需大力 增大触摸面积才有响应,灵敏度过高时用户轻触或接近时有响应,但正常触摸时反而没响应,这是因为误触发了噪声保护功能。触摸灵敏度的更改必须先关闭扫描后再设置,新的灵敏度数据将在重新使能扫描 100ms 后生效。

默认配置示例: tkHandle. Init. GbSen = OXAO;

2. 4 低功耗模式设置参数介绍

当需要使用低功耗扫描模式时,可按照要求配置以下参数,其他时候这些参数配置为默认值。

1. 低功耗扫描使能参数(LP)

该参数控制是否自动进入低功耗扫描模式。

设置为 TK_LP_ENABLE 时,开启自动进入低功耗扫描功能,当一段时间(这个时间由 lp_delay 设置)没有触摸按键将自动进入低功耗扫描。

设置为 TK LP DISABLE 时,关闭自动进入低功耗扫描功能。

默认关闭。

默认配置示例: tkHandle. Init. LP = TK LP DISABLE;

2. 群扫描补偿电流参数(IComGS)

该参数可设置范围从 0 到 127, 该参数直接作用于内部 CSD 模块群扫描补偿电流参数,该值配置越大,群扫描信号越大,越容易低功耗唤醒;但要避免 因为过大而无法进入低功耗。默认设置为 40。

默认配置示例: tkHandle. Init. IComGS = 0x28:

3. 低功耗扫描下的扫描周期参数(LowPowerScanPeriod)

该参数控制进入低功耗扫描模式时的扫描周期。

该参数设置为 TK LPSP 500 时, 低功耗扫描模式下的扫描周期为 500ms;

该参数设置为 TK LPSP 250 时, 低功耗扫描模式下的扫描周期为 250ms;

该参数设置为 TK LPSP 100 时,低功耗扫描模式下的扫描周期为 100ms。

默认设置为 TK LPSP 500。

默认配置示例: tkHandle.Init.LowPowerScanPeriod = TK_LPSP_500;

4. 群扫描灵敏度参数(LSenseGS)

该参数设置可范围从 0 到 255, 默认为 0 (不配置), 直接使用全局灵敏度参数所配置值; 当配置为非 0 时,则使用所配置值。具体含义参照附录 TK_GSR 含义对照表。通过配置该参数,可优化低功耗唤醒。

普通扫描是指一次开启一个通道,通过内部 CSD 模块扫描得到这个通道的信号值。群扫描主要相对于普通扫描而言,是指一次同时开启所有配置通道,通过内部 CSD 模块扫描得到这些通道的整体信号值,触模其中任一通道,整体信号值均会有所体现,但是,整体信号值并非所有配置通道普通扫描信号的直接简单累加。群扫描是软件低功耗的实现方式。

默认配置示例: tkHandle. Init. LSenseGS = 0x68;

5. 按键通道参与低功耗扫描使能参数(GsMask)

该参数可设置范围从 0x0000 到 0x3FFF, 用于控制电容通道参与低功耗扫描使能, 共 13 个通道可设置, 对应该参数的 13 位, 如图 2, 配置该参数为 0x3FFF 时,将使能 13 个按键通道参与低功耗扫描。

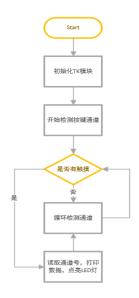
默认设置为 0x00, 不参与低功耗扫描。

默认配置示例: tkHandle. Init. GsMask = 0x00:

电容按键通道	12	11	10	9	8	7	6	5	4	3	2	1	0
GsMask设置为 0x3FFF时	1	1	1	1	1	1	1	1	1	1	1	1	1

图 2,按键通道是否参与低功耗扫描

注: 当 TK 模块进入低功耗扫描模式时, TK 模块将无法被修改配置, 如: 无法开启扫描, 无法 开启睡眠模式等。直按键有被触摸, TK 模块才会被唤醒, 推出低功耗扫描模式。


V1.1 8/24

2. 5 初始化结构体调用示例(默认正常工作)

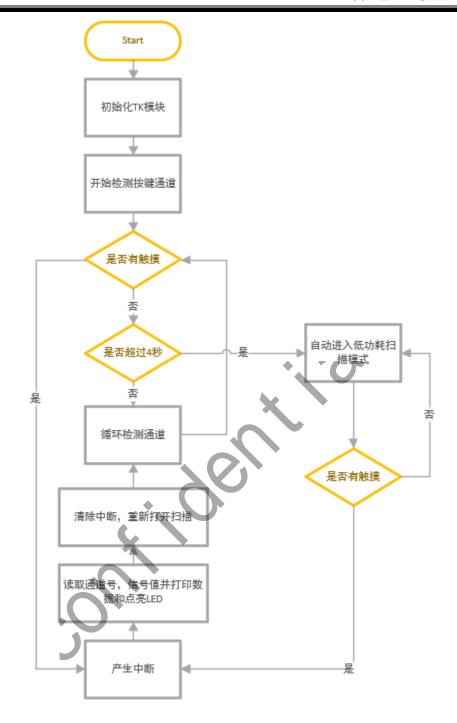
```
//TK 结构体声明
static TK HandleTypeDef tkHandle;
//设置结构体参数(设置参数为默认值)
tkHandle.Init.NPRR = 0;
                               // 设置噪声阈值比例倍数为4
tkHandle. Init. DNPR = TK DNPR DISABLE;// 关闭噪声保护
tkHandle. Init. MultiOn = TK MULTION DISABLE; //关闭多通道同时感应
tkHandle.Init.Debounce = 3:
                               //设置防抖参数为3
tkHandle. Init. ChannelEN = 0x3FFF; //使能按键通道
tkHandle. Init. GbSen = 0xA0; //设置全局灵敏度为合适的值(可通过调试得到,调试方法在后
续章节介绍)
tkHandle. Init. LP = TK LP DISABLE; //关闭自动进入低功耗扫描模式
tkHandle. Init. IComGS = 0x28:
                             //设置群扫描补偿电流为 40
                              //设置 CDC 模块扫描频率为 0x07
tkHandle.Init.CdcFswDiv = 0x07:
tkHandle.Init.LowPowerScanPeriod = TK LPSP 500;//设置低功耗扫描周期为 500ms
tkHandle. Init. KeyDebounceCount = 1; //设置消抖拍数为 1 🔈
                             //默认值, 4S 无按键变化进入低功耗扫描
tkHandle. Init. LpDelay = 4;
                              //设置扫描周期为默认值 1, 既 1*16ms
tkHandle. Init. ScanPeriod = 1;
                             //禁止所有通道参与低功耗扫描
tkHandle. Init. GsMask = 0x00;
                             //设置群扫描灵敏度为0
tkHandle. Init. LSenseGS = 0x00;
//调用 TK 模块初始化函数
if (HAL TK Init(&tkHandle) != HAL OK)
{
     Error_TKHandle();
初始化结果:
```

初始化配置完成后,TK 模块进入正常扫描模式,开始对触摸按键扫描,检测是否由触摸发 生。正常工作流程图:

9/24 V1.1

2. 6 初始化结构体调用示例(开启低功耗扫描工作)

```
//TK 结构体声明
static TK HandleTypeDef tkHandle;
//设置结构体参数(根据 1.4 章节设置相应参数,其他保持默认值)
tkHandle.Init.NPRR = 0;
                              // 设置噪声阈值比例倍数为4
tkHandle. Init. DNPR = TK DNPR DISABLE;// 关闭噪声保护
tkHandle. Init. MultiOn = TK MULTION DISABLE; //关闭多通道同时感应
tkHandle.Init.Debounce = 3;
                            //设置防抖参数为3
tkHandle. Init. ChannelEN = 0x3FFF; //使能按键通道
tkHandle. Init. GbSen = 0xA0;
                            //设置全局灵敏度为合适的值(可通过调试得到,调试
方法在后续章节介绍)
tkHandle. Init. LP = TK LP ENABLE; //使能自动进入低功耗扫描模式
                            //设置群扫描补偿电流为 40
tkHandle.Init.IComGS = 0x28;
                            //设置 CDC 模块扫描频率为 0x07
tkHandle.Init.CdcFswDiv = 0x07:
tkHandle.Init.LowPowerScanPeriod = TK LPSP 500;//设置低功耗扫描周期为 500ms
kHandle. Init. KeyDebounceCount = 1; //设置消抖拍数为1 🛕
tkHandle.Init.LpDelay = 4;
                             //设置默认无触摸 4s 进入低功耗扫描模式
                             //设置扫描周期为默认值 1, 既 1*16ms
tkHandle.Init.ScanPeriod = 1;
                             //开启所有通道参与低功耗扫描模式
tkHandle.Init.GsMask = 0x3FFF;
tkHandle.Init.LSenseGS = 0x68;
                             //设置群扫描灵敏度为合适的值(可通过调试得到,调
试方法在后续章节介绍)
//调用 TK 模块初始化函数
if (HAL TK Init(&tkHandle) != HAL (MK)
{
    Error TKHandle();
初始化结果:
```


初始化完成后,TK 模块进入正常扫描模式,开始对触摸按键扫描,每 16ms (初始化设置) 扫描一次按键,检测是否有触摸。

由于开启了自动进入低功耗模式功能,当触摸按键 4S(初始化设置)没有被触摸时,TK模块进入低功耗扫描模式,降低运行功耗。此时,TK模块每 500ms(初始化设置)扫描一次触摸按键,如果检测到触摸,TK模块会被唤醒,重新进入正常扫描模式。

注: 当 TK 模块进入低功耗扫描模式时, TK 模块的参数将无法通过寄存器参数设置函数更改,只有 TK 模块正常扫描时才可以使用寄存器参数设置函数。 流程图:

V1.1 10/24

V1.1

第3章 TK 模块的功能函数介绍

3. 1 初始化函数

```
1. 函数名称: HAL_TK Init();
2. 参数:
     TK HandleTypeDef *htk: htk 指向包含 TK InitTypeDef 结构体的指针
3. 返回值: HAL status
   函数使用方法:配置好初始化结构体参数后,调用该函数初始化 TK 模块,如下:
   if (HAL_TK_Init(htk) != HAL_OK)
   {
      Error_TKHandle();
   }
3. 2 反初始化函数
3. 函数名称: HAL TK DeInit();
4. 参数:
     TK_HandleTypeDef *htk: htk 指向包含 TK_InitTypeDef 结构体的指针
3. 返回值: HAL status
4. 函数使用方法:调用该函数实现反初始化 TK 模块,如下:
   if (HAL_TK_ DeInit(htk) != HAL_OK)
   {
      Error_TKHandle();
   }
3. 3 关闭写保护函数
5. 函数名称: HAL_TK_Disable_WriteProtection();
6. 参数:
     TK HandleTypeDet *htk: htk 指向包含 TK InitTypeDef 结构体的指针
3. 返回值: HAL status
   函数使用方法:调用该函数关闭 TK 模块写保护功能,只有关闭写保护功能,才能设置 TK 模
块参数,如任何两次写操作间隔超过 0.15s,写保护自动生效,如下:
     while (HAL_TK_ Disable_WriteProtection(htk) != HAL_OK)
      {
         return HAL_ERROR;
```

V1.1 12/24

3. 4 寄存器数据读取函数

```
1. 函数名称: HAL_TK_Get_Reg
2. 参数:
    uint8_t regAddr: 寄存器地址
    uint8_t *data: 存放数据缓存区
```

└ uint8 t size: 数据大小

- 3. 返回值: HAL status
- 4. 函数使用方法:通过填写要读取的寄存器,数据存放缓存区,数据大小进行读取,如下: HAL_TK_Get_Reg(CNTLR, (uint8_t *) RxBUFF, 2);//读取通道检测信息

3. 5 寄存器参数设置函数

- 1. 函数名称: HAL_TK_Set_Reg
- 2. 参数:

```
uint8_t regAddr: 寄存器地址
uint8_t *param: 存放数据缓存区
uint8_t size: 数据大小
```

- 3. 返回值: HAL status
- 4. 函数使用方法:通过填写要写的寄存器,存放数据的缓存区,数据大小进行写入,如下: TK_SetReg(WPR, TK_DISABLE_WP, 1);//关闭写保护功能 (注:使用寄存器参数设置函数之前,必须关闭 TK 模块写保护功能)

3. 6 开启扫描函数

- 7. 函数名称: HAL_TK_ScanEnable();
- 8. 参数:

TK HandleTypeDef *htk: htk 指向包含 TK InitTypeDef 结构体的指针

- 3. 返回值: HAL status
- 4. 函数使用方法:调用该函数使能 TK 模块扫描功能,如下:

```
while (HAL_TK_ScanEnable(htk) != HAL_OK)
{
    return HAL_ERROR;
}
```

V1.1 13/24

3. 7 关闭扫描函数

- 1. 函数名称: HAL TK ScanDisable
- 2. 参数:

TK_HandleTypeDef *htk: htk 指向包含 TK_InitTypeDef 结构体的指针

- 3. 返回值: HAL status
- 9. 函数使用方法:调用该函数关闭 TK 模块扫描功能,如下:

```
while (HAL_TK_ScanDisable(htk) != HAL_OK)
{
    return HAL_ERROR;
}
```

3. 8 单通道灵敏度设置函数

- 1. 函数名称: HAL_TK_Set_Lsense
- 2. 参数:

```
TK_HandleTypeDef *htk: htk 指向包含 TK_InitTypeDef 结构体的指针
```

uint8_t ChannelNum: 电容按键通道号

uint8 t Lsense: 灵敏度大小

- 3. 返回值: HAL status
- 4. 函数使用方法:将要配置的通道填入 Channel Num, 灵敏度填入 Lsense,如下: HAL_TK_Set_Lsense(&tkHandle,0,0xDA);//将通道 0 的灵敏度设置为 0x68

3. 9 开启睡眠函数

1. 函数名称:

HAL StatusTypeDef HAL TK Fnable_DP(TK_HandleTypeDef *htk, , uint8_t _IComGS);

2. 参数:

TK_HandleTypeDef *htk: htk 指向包含 TK_InitTypeDef 结构体的指针

uint8 t WTR: 唤醒阈值

uint8_t Lsense: 群扫描补偿电流

- 3. 返回值: HAL status
- 4. 函数使用方法:将唤醒阈值填入_WTR,群扫描补偿电流填入_IComGS,如下: HAL_TK_Enable_DP(&tkHandle, 0x2d, 0x28);//使能后立即进入睡眠模式,模块所有功能禁用,唤醒需要调用唤醒函数。
 - 注:唤醒阈值可设置范围从 0 到 255,默认为 0xFF,越小越不灵敏;

TK 模块有两种唤醒机制:

- (1) 超低功耗唤醒,当 wake_th 不为 0xff 时进入此模式,此时功耗在 10uA 以下,阈值 范围从 30 到 60,值越小越灵敏。(即,睡眠模式)
- (2) 软件轮询唤醒, wake_th 为 0xff 时进入此模式,即低功耗扫描模式。

V1.1 14/24

当 LPSP=0 时, 10min 平均功耗约 6uA。

当 LPSP=1 时,10min 平均功耗约 8uA。 注:具体功耗大小与硬件设计、参数配置等因素相关。

注: 当 TK 模块进入睡眠模式时,TK 模块将无法进行除了唤醒以外的任何操作,如:无法读数据,无法修改配置,直到调用睡眠唤醒函数将 TK 模块唤醒,并且唤醒后需要重新配置 TK 模块。

3. 10唤醒睡眠函数

- 1. 函数名称: HAL TK Wake DP
- 2. 参数: 无
- 3. 返回值: HAL status
- 4. 函数使用方法:调用该函数即可唤醒 TK 模块,如下:

HAL TK Wake DP();//唤醒是TK 模块

1sTK Init(); //唤醒后需要重新配置TK 模块

3. 11 中断使能函数

- 1. 函数名称: HAL TK Enable IT
- 2. 参数:

TK_HandleTypeDef *htk: htk 指向包含 TK_InitTypeDef 结构体的指针

- 3. 返回值: HAL status
- 4. 函数使用方法:调用该函数即可开启按键响应中断,当检测到按下或松开时,中断产生响应,如下:

HAL TK Enable IT(&tkHandle);

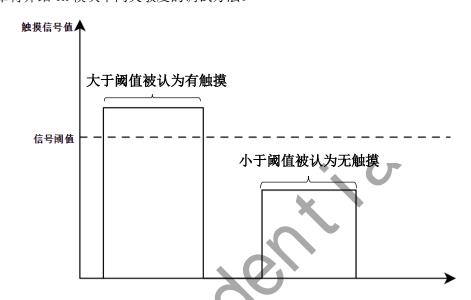
3. 12 中断禁止函数

- 1. 函数名称: HAL_TK_ DisEnable_IT
- 2. 参数:

TK_HandleTypeDef *htk: htk 指向包含 TK_InitTypeDef 结构体的指针

- 3. 返回值: HAL status
- 4. 函数使用方法:调用该函数即可关闭按键响应中断,当检测到按下或松开时,中断不会响应,如下:

HAL TK DisEnable IT(&tkHandle);


V1.1 15/24

第4章 TK 模块调试

4. 1 TK 调试说明

电容触摸按键被触摸时,TK 模块会产生相应按键通道的触摸信号值,如果触摸信号值大于信号阈值,则TK 模块将判断该触摸按键检测到触摸。我们通过设置通道的灵敏度,可以改变触摸时的触摸信号值大小,如果灵敏度设置太低,触摸信号值太小,按键可能无法检测到触摸;如果灵敏度设置太高,触摸信号值太大,按键可能会被误触。所以,需要通过调试,得到适合的灵敏度大小。本章将介绍TK 模块不同灵敏度的调试方法。

4. 2 关于灵敏度寄存器详细说明

4. 2. 1 全局灵敏度寄存器 TK GSR

这是一个关于灵敏度的综合寄存器,有以下多层含义(表格在附录):

- a) 全局灵敏度寄存器 TK_GSR 取值范围为: 0~255。
- b) TK_GSR 每 32 对应一档,即,TK_GSR 除以 32, 取整换算得到扫描精度 N, 余查表得到信号 阈值 FingerTH。
- c) 扫描精度 N = 16-(TK_GSR /32),即,16~9。扫描精度直接作用于 TK 模块内部 CSD 模块扫描窗口参数 CSD_WIN,对应关系为: CSD_WIN=win_tab[N-9],其中,win_tab[] = {2,4,8,16,32,64,128,252}。
- d) 信号阈值 FingerTH = FingerTHTb1[TK_GSR%32], 其中, FingerTHTb1[32] = {90,94,98,102,106,110,114,118,120,124,128,132,136,140,144,148,152,156,160,164,168,172,176,180,184,188,192,196,200,204,208,212}。信号阈值 FingerTH 为信号是否达到有效上报键值的判断阈值;
- e) 噪声阈值 NoiseTH 由扫描精度 N 与信号阈值 FingerTH 换算而来: NoiseTH = (FingerTH/2)*N/10, 在低功耗扫描中, 噪声阈值 NoiseTH 为信号是否达到有效触摸 唤醒的判断阈值。

注: TK GSR 越小, N 越大, CSD WIN 越大, 扫描信号越大, 灵敏度越高

V1.1 16/24

4. 2. 2 单个通道灵敏度寄存器 TK LSRx

单个通道灵敏度 TK_LSRx 只作用于单个所配置通道,默认为 0 (不配置),直接使用全局灵敏 度寄存器 TK GSR 配置值,当配置为非 0 时,则使用所配置值。具体含义参照 TK GSR 含义对照表

4. 2. 3 群扫描灵敏度寄存器 TK LSGR

普通扫描是指一次开启一个通道,通过内部 CSD 模块扫描得到这个通道的信号值。群扫描主要相对于普通扫描而言,是指一次同时开启所有配置通道(具体由 TK_CHELR、TK_CHEHR、TK_GMRO、 TK_GMR1 寄存器配置),通过内部 CSD 模块扫描得到这些通道的整体信号值,触摸其中任一通道,整体信号值均会有所体现,但是,整体信号值并非所有配置通道普通扫描信号的直接简单累加。群扫描是软件低功耗的实现方式。 群扫描灵敏度由群扫描灵敏度寄存器 TK_LSGR 配置,默认为 0(不配置),直接使用全局灵敏度寄存器 TK_GSR 所配置值;当配置为非 0 时,则使用所配置值。具体含义参照 TK GSR 含义对照表。通过配置该寄存器,可优化低功耗唤醒。

4. 2. 4 群扫描补偿电流寄存器 TK_ICGSR

该寄存器直接作用于内部 CSD 模块群扫描补偿电流参数 CSD_RXO_IMS,取值范围为 $0^{\sim}127$ 。 默认为 40。一般,该值配置越大,群扫描信号越大,越容易低功耗唤醒;但要避免 因为过大而无法进入低功耗。

4. 2. 5 CSD 模块扫描频率分频寄存器 TK CFDR

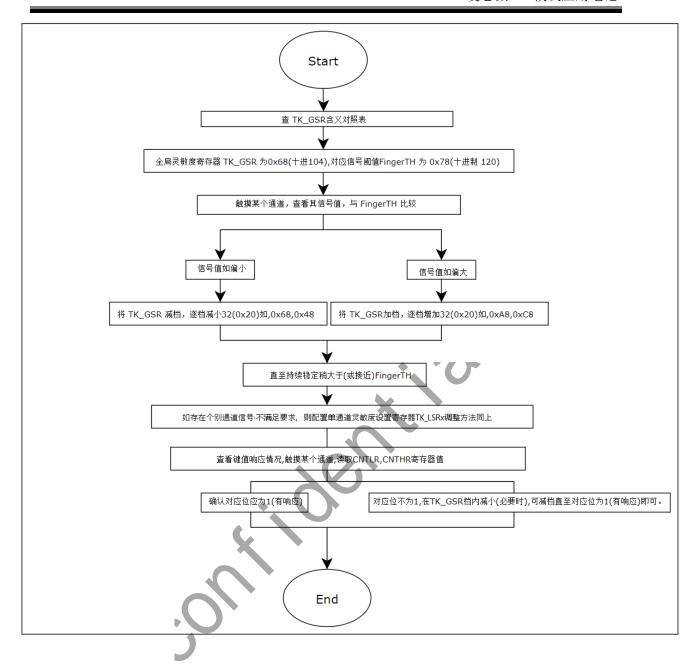
该寄存器直接作用于内部 CSD 模块时钟参数 CSD CKSEL, 默认值为 0x07, 一般不需要配置。有时,为了规避扫描干扰,可以尝试配置该寄存器。

4. 3 三种功耗下的灵敏度调试

4. 3. 1 正常扫描

正常扫描即不进入低功耗而进行正常功耗扫描,主要需要配置检测通道、全局灵敏度等参数,其它参数一般选择默认即可。 其中,重点是配置全局灵敏度寄存器 TK_GSR, 必要时配置单个通道灵敏度寄存器 TK_LSRx。用铜柱(9mm)触摸,读取各通道触摸信号值,应大于相应信号阈值,并确保每个通道触摸均有响应键值上报。(注:需要带面板触摸,或覆盖同面板厚度覆盖物)

在正常扫描下,主控可以采用轮询模式来获取键值,或接收 IRQ 的信号,再来读取键值。由于低功耗模式下无法使用 TK 模块,如果主控采用轮询模式,则不可以使能低功耗模式。


1. 初始化设置(除了以下参数之外,其他参数都设置为默认值)

```
tkHandle. Init. ChannelEN = 0x3fff;//使能 13 个按键通道tkHandle. Init. GbSen = 0x68;//设置全局灵敏度(待调试)
```

- 2. 数据读取
 - a)从寄存器 TK_CNTLR 和 TK_CNTHR 读取按键和滑条状态,如下:
 HAL TK Get Reg((uint8 t *)&tkHandle.Instance->CNTLR, RxBUFF, 2):
 - b)从寄存器 TK_SIGLRx 和 TK_SIGHRx 读取信号值,如下:
 HAL_TK_Get_Reg((uint8_t *)&tkHandle.Instance->SIGLR1, RxBUFF, 1);
 HAL TK Get Reg((uint8 t *)&tkHandle.Instance->SIGHR1, RxBUFF + 1, 1);
- 3. 调试步骤

V1.1 17/24

4. 3. 2 低功耗扫描

在正常扫描参数基础上,增配低功耗扫描通道,并对群扫描相关寄存器予以配置调试。软件低功耗是采用群扫描方式来实现的。其中,重点是配置群扫描补偿电流寄存器 TK_ICGSR、以及群扫描灵敏度寄存器 TK_LSGR。各通道的群扫描信号值,应大于群扫描噪声阈值,确保可以进入低功耗,也可唤醒。

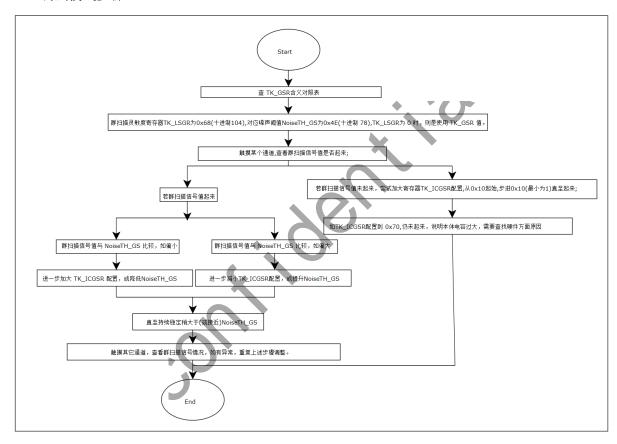
1. 初始化参数设置(除了一下参数之外,其他参数都设置为默认值)

```
tkHandle. Init. ChannelEN = 0x3fff; //使能 13 个按键通道
tkHandle. Init. GbSen = 0xA0; //设置全局灵敏度(根据调试确定)
tkHandle. Init. LP = TK_LP_ENABLE; //开启自动进入低功耗扫描
tkHandle. Init. IComGS = 0x10; //配置群扫描补偿电流(待调试)
tkHandle. Init. LpDelay = 4; //设置默认无触摸 4s 进入低功耗扫描模式
tkHandle. Init. LowPowerScanPeriod = TK_LPSP_500;//低功耗扫描周期 500ms
```

V1.1 18/24


```
tkHandle. Init. GsMask = 0x3FFF;//配置检测通道参与低功耗扫描tkHandle. Init. LSenseGS = 0x68;//配置群扫描灵敏度(待调试)
```

2. 数据读取


a)从寄存器 TK CNTLR 和 TK CNTHR 读取按键和滑条状态,如下:

HAL TK Get Reg((uint8 t *)&tkHandle.Instance->CNTLR, RxBUFF, 2);

b) 从寄存器 TK_SIGSLRx 和 TK_SIGSHRx 读取对应通道的群扫描信号值,如下所示为读取通道 0 的群扫描信号值:

```
HAL_TK_Get_Reg((uint8_t *)&tkHandle.Instance->SIGLSRO, RxBUFF, 1);
HAL_TK_Get_Reg((uint8_t *)&tkHandle.Instance->SIGSHRO, RxBUFF + 1, 1);
```

3. 调试模式步骤:

注:成功进入软件低功耗后的电流会在 20uA 以内跳动

4. 3. 3 睡眠模式

当低功耗扫描的调节不起作用,即群扫描信号一直无法超过对应的阈值,则可尝试使用睡眠模式降低功耗。常用的寄存器有:触摸阈值 TK WTR,补偿电流 TK ICGSR。

1. 初始化参数设置,与正常扫描设置一致

```
tkHandle. Init. ChannelEN = 0x3fff;//使能 13 个按键通道tkHandle. Init. GbSen = 0xDA;//设置全局灵敏度(调试好的灵敏度)
```

2. 调用睡眠使能函数

调用该函数后, TK 模块将立即进入睡眠模式

V1.1 19/24

HAL_StatusTypeDef HAL_TK_Enable_DP(TK_HandleTypeDef *htk, uint8_t _WTR, uint8_t
IComGS);

3. 调试模式步骤:

- a) TK ICGSR (IComGS), 一般取 5~120, 默认为 40, 值越大越容易退出低功耗。
- b) TK_WTR (_WTR), 一般取 30~60, 默认为 0xFF。当为 0xff 时,程序会进入软件低功耗,使用硬件低功耗时必须 不为 0xff。一般取 45,值越大越容易退出低功耗。 由于进入硬件低功耗模式后, iic 无法通信, 这时可以对地短接 IRQ 脚来强制退出低功耗, 进而读取一些信号数据。
 - 注:成功进入硬件低功耗后的电流会保持在 10uA 以内。
 - 1、 TK_WTR, 值越小越不容易唤醒。建议在范围内,按照由大到小顺序尝试设置,确保能够进入硬件低功耗, 也可顺利唤醒。
 - 2、 如果按照步骤 1 调试都无法成功进入或退出硬件低功耗,则可以结合 TK_ICGSR 寄存器一起调试。 该寄存器直接作用于内部 CSD 模块群扫描补偿电流参数 CSD_ICOM ,取值范围为 $0^{\sim}127$ 。 默认为 40,一般该值配置越大,扫描信号越大,越容易低功耗唤醒;但要避免因为过大而无法进入低功耗。
 - 3、硬件低功耗扫描对整体硬件电路设计要求较高,如达不到则可能会出现无法唤醒情况,导致无法使用。建议客户注意这一风险,做好系统稳定与功耗的取舍,谨慎选择硬件低功耗扫描。一般情况下,选择软件低功耗扫描即可满足应用要求。如确需选择硬件低功耗扫描,必须在充分测试基础上进行。

V1.1 20/24

附录:

全局灵敏度寄存器 TK_GSR 含义对照表-1

GbSen	N	CSD_WIN	FingerTH	NoiseTH	GbSen	N	CSD_WIN	FingerTH	NoiseTH
0	16	252	90	72	32	15	128	90	67
1	16	252	94	75	33	15	128	94	70
2	16	252	98	78	34	15	128	98	73
3	16	252	102	81	35	15	128	102	76
4	16	252	106	84	36	15	128	106	79
5	16	252	110	88	37	15	128	110	82
6	16	252	114	91	38	15	128	114	85
7	16	252	118	94	39	15	128	118	88
8	16	252	120	96	40	15	128	120	90
9	16	252	124	99	41	15	128	124	93
10	16	252	128	102	42	15	128	128	96
11	16	252	132	105	43	15	128	132	99
12	16	252	136	108	44	15	128	136	102
13	16	252	140	112	45	15	128	140	105
14	16	252	144	115	46	15	128	144	108
15	16	252	148	118	47	15	128	148	111
16	16	252	152	121	48	15	128	152	114
17	16	252	156	124	49	15	128	156	117
18	16	252	160	128	50	15	128	160	120
19	16	252	164	131	51	15	128	164	123
20	16	252	168	134	52	15	128	168	126
21	16	252	172	137	53	15	128	172	129
22	16	252	176	140	54	15	128	176	132
23	16	252	180 🄷	144	55	15	128	180	135
24	16	252	184	147	56	15	128	184	138
25	16	252	188	150	57	15	128	188	141
26	16	252	192	153	58	15	128	192	144
27	16	252	196	156	59	15	128	196	147
28	16	252	200	160	60	15	128	200	150
29	16	252	204	163	61	15	128	204	153
30	16	252	208	166	62	15	128	208	156
31	16	252	212	169	63	15	128	212	159

全局灵敏度寄存器 TK_GSR 含义对照表-2

GbSen	N	CSD_WIN	FingerTH	NoiseTH	GbSen	N	CSD_WIN	FingerTH	NoiseTH
64	14	64	90	63	96	13	32	90	58
65	14	64	94	65	97	13	32	94	61
66	14	64	98	68	98	13	32	98	63
67	14	64	102	71	99	13	32	102	66
68	14	64	106	74	100	13	32	106	68
69	14	64	110	77	101	13	32	110	71
70	14	64	114	79	102	13	32	114	74
71	14	64	118	82	103	13	32	118	76
72	14	64	120	84	104	13	32	120	78
73	14	64	124	86	105	13	32	124	80
74	14	64	128	89	106	13	32	128	83
75	14	64	132	92	107	13	32	132	85
76	14	64	136	95	108	13	32	136	88
77	14	64	140	98	109	13	32	140	91
78	14	64	144	100	110	13	32	144	93
79	14	64	148	103	111	13	32	148	96
80	14	64	152	106	112	13 🔻	- 32	152	98
81	14	64	156	109	113	13	32	156	101
82	14	64	160	112	114	13	32	160	104
83	14	64	164	114	115	13	32	164	106
84	14	64	168	117	116	13	32	168	109
85	14	64	172	120	117	13	32	172	111
86	14	64	176	123	118	13	32	176	114
87	14	64	180	126	119	13	32	180	117
88	14	64	184	128	120	13	32	184	119
89	14	64	188	131	121	13	32	188	122
90	14	64	192	134	122	13	32	192	124
91	14	64	196	137	123	13	32	196	127
92	14	64	200	140	124	13	32	200	130
93	14	64	204	142	125	13	32	204	132
94	14	64	208	145	126	13	32	208	135
95	14	64	212	148	127	13	32	212	137

全局灵敏度寄存器 TK_GSR 含义对照表-3

GbSen	N	CSD_WIN	FingerTH	NoiseTH	GbSen	N	CSD_WIN	FingerTH	NoiseTH
128	12	16	90	54	160	11	8	90	49
129	12	16	94	56	161	11	8	94	51
130	12	16	98	58	162	11	8	98	53
131	12	16	102	61	163	11	8	102	56
132	12	16	106	63	164	11	8	106	58
133	12	16	110	66	165	11	8	110	60
134	12	16	114	68	166	11	8	114	62
135	12	16	118	70	167	11	8	118	64
136	12	16	120	72	168	11	8	120	66
137	12	16	124	74	169	11	8	124	68
138	12	16	128	76	170	11	8	128	70
139	12	16	132	79	171	11	8	132	72
140	12	16	136	81	172	11	8	136	74
141	12	16	140	84	173	11	8	140	77
142	12	16	144	86	174	11	8	144	79
143	12	16	148	88	175	11	8	148	81
144	12	16	152	91	176	11	8	152	83
145	12	16	156	93	177	11	8	156	85
146	12	16	160	96	178	.11	8	160	88
147	12	16	164	98	179	11	8	164	90
148	12	16	168	100	180	11	8	168	92
149	12	16	172	103	181	11	8	172	94
150	12	16	176	105	182	11	8	176	96
151	12	16	180 🔷	108	183	11	8	180	99
152	12	16	184	110	184	11	8	184	101
153	12	16	188	112	185	11	8	188	103
154	12	16	192	115	186	11	8	192	105
155	12	16	196	117	187	11	8	196	107
156	12	16	200	120	188	11	8	200	110
157	12	16	204	122	189	11	8	204	112
158	12	16	208	124	190	11	8	208	114
159	12	16	212	127	191	11	8	212	116

全局灵敏度寄存器 TK_GSR 含义对照表-4

GbSen	N	CSD_WIN	FingerTH	NoiseTH	GbSen	N	CSD_WIN	FingerTH	NoiseTH
192	10	4	90	45	224	9	2	90	40
193	10	4	94	47	225	9	2	94	42
194	10	4	98	49	226	9	2	98	44
195	10	4	102	51	227	9	2	102	45
196	10	4	106	53	228	9	2	106	47
197	10	4	110	55	229	9	2	110	49
198	10	4	114	57	230	9	2	114	51
199	10	4	118	59	231	9	2	118	53
200	10	4	120	60	232	9	2	120	54
201	10	4	124	62	233	9	2	124	55
202	10	4	128	64	234	9	2	128	57
203	10	4	132	66	235	9	2	132	59
204	10	4	136	68	236	9	2	136	61
205	10	4	140	70	237	9	2	140	63
206	10	4	144	72	238	9	2	144	64
207	10	4	148	74	239	9	2	148	66
208	10	4	152	76	240	9	2	152	68
209	10	4	156	78	241	9	2	156	70
210	10	4	160	80	242	9	2	160	72
211	10	4	164	82	243	9	2	164	73
212	10	4	168	84	244	9	2	168	75
213	10	4	172	86	245	9	2	172	77
214	10	4	176	88	246	9	2	176	79
215	10	4	180	90	247	9	2	180	81
216	10	4	184	92	248	9	2	184	82
217	10	4	188	94	249	9	2	188	84
218	10	4	192	96	250	9	2	192	86
219	10	4	196	98	251	9	2	196	88
220	10	4	200	100	252	9	2	200	90
221	10	4	204	102	253	9	2	204	91
222	10	4	208	104	254	9	2	208	93
223	10	4	212	106	255	9	2	212	95

V1.1 24/24